This research paper investigates the nature of the 660-km seismic discontinuity in Earth's mantle, which marks the boundary between the upper and lower mantle. The key findings and implications are:
This study provides important constraints on the nature of Earth's mantle and its dynamics, supporting models of whole-mantle convection and a chemically homogeneous mantle.
Figure. Phase relations in the system Mg2SiO4-Fe2SiO4 at a temperature of 1700 K. Brg: bridgmanite, fPc: ferropericlase, Rw: ringwoodite, St: stishovite. At the mantle composition, a width of the Rw + Brg + fPc loop is only 0.01 GPa in pressure, corresponding to 250 m in depth. This width becomes even smaller at the mantle temperature of 2000 K. The horizontal axis is the fraction of Mg2SiO4 component in percent.
Takayuki Ishii, Rong Huang, Robert Myhill, Hongzhan Fei, Iuliia Koemets, Zhaodong Liu, Fumiya Maeda, Liang Yuan, Lin Wang, Dmitry Druzhbin, Takafumi Yamamoto, Shrikant Bhat, Robert Farla, Takaaki Kawazoe, Noriyoshi Tsujino, Eleonora Kulik, Yuji Higo, Yoshinori Tange, Tomoo Katsura, 2019. Sharp 660-km discontinuity controlled by extremely narrow binary post-spinel transition, Nature Geoscience, 12, 869–872. 10.1038/s41561-019-0452-1